Generalized K-Iterated Function System
نویسندگان
چکیده
In 1969, Kannan [1] proved a new mapping which improved the Banach Contraction theorem. The purpose of this paper is to generalize the Kannan mapping and also to prove it, in space of fractals.
منابع مشابه
Weak $F$-contractions and some fixed point results
In this paper we define weak $F$-contractions on a metric space into itself by extending $F$-contractions introduced by D. Wardowski (2012) and provide some fixed point results in complete metric spaces and in partially ordered complete generalized metric spaces. Some relationships between weak $F$-contractions and $Fi$-contractions are highlighted. We also give some application...
متن کاملChaotic property for non-autonomous iterated function system
In this paper, the new concept of non-autonomous iterated function system is introduced and also shown that non-autonomous iterated function system IFS(f_(1,∞)^0,f_(1,∞)^1) is topologically transitive for the metric space of X whenever the system has average shadowing property and its minimal points on X are dense. Moreover, such a system is topologically transitive, whenever, there is a point ...
متن کاملCubic Spline Coalescence Fractal Interpolation through Moments
This paper generalizes the classical cubic spline with the construction of the cubic spline coalescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of the generalized iterated...
متن کاملSolving the Inverse Problem for Function and Image Approximation Using Iterated Function Systems
This paper is concerned with function approximation and image representation using a new formulation of Iterated Function Systems (IFS) over the general function spaces L p (X;): An N-map IFS with grey level maps (IFSM), to be denoted as (w;), is a set w of N contraction maps w i : X ! X over a compact metric space (X; d) (the \base space") with an associated set of maps i : R ! R. Associated w...
متن کاملRotation number and its properties for iterated function and non-autonomous systems
The main purpose of this paper is to introduce the rotation number for non-autonomous and iterated function systems. First, we define iterated function systems and the lift of these types of systems on the unit circle. In the following, we define the rotation number and investigate the conditions of existence and uniqueness of this number for our systems. Then, the notions rotational entropy an...
متن کامل